Inferring direct DNA binding from ChIP-seq

نویسندگان

  • Timothy L. Bailey
  • Philip Machanick
چکیده

Genome-wide binding data from transcription factor ChIP-seq experiments is the best source of information for inferring the relative DNA-binding affinity of these proteins in vivo. However, standard motif enrichment analysis and motif discovery approaches sometimes fail to correctly identify the binding motif for the ChIP-ed factor. To overcome this problem, we propose 'central motif enrichment analysis' (CMEA), which is based on the observation that the positional distribution of binding sites matching the direct-binding motif tends to be unimodal, well centered and maximal in the precise center of the ChIP-seq peak regions. We describe a novel visualization and statistical analysis tool--CentriMo--that identifies the region of maximum central enrichment in a set of ChIP-seq peak regions and displays the positional distributions of predicted sites. Using CentriMo for motif enrichment analysis, we provide evidence that one transcription factor (Nanog) has different binding affinity in vivo than in vitro, that another binds DNA cooperatively (E2f1), and confirm the in vivo affinity of NFIC, rescuing a difficult ChIP-seq data set. In another data set, CentriMo strongly suggests that there is no evidence of direct DNA binding by the ChIP-ed factor (Smad1). CentriMo is now part of the MEME Suite software package available at http://meme.nbcr.net. All data and output files presented here are available at: http://research.imb.uq.edu.au/t.bailey/sd/Bailey2011a.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring transcription factor complexes from ChIP-seq data

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important asp...

متن کامل

An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.

Transcription factors are proteins that bind to specific DNA sequences and play important roles in controlling the expression levels of their target genes. Hence, prediction of transcription factor binding sites (TFBSs) provides a solid foundation for inferring gene regulatory mechanisms and building regulatory networks for a genome. Chromatin immunoprecipitation sequencing (ChIP-seq) technolog...

متن کامل

ILLUMINA SEQUENCING Whole-Genome Chromatin IP Sequencing (ChIP-Seq) Illumina ChIP-Seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify binding sites of DNA-associated proteins. Illumina ChIP-Seq technology precisely and cost-effectively maps global binding sites for a protein of interest

INTRODUCTION Transcription factors and other chromatin-associated proteins are essential phenotype-influencing mechanisms. Determining how proteins interact with DNA to regulate gene expression is essential for fully understanding many biological processes and disease states. This epigenetic information is complimentary to genotype and expression analysis. Traditional methods have successfully ...

متن کامل

ILLUMINA SEQUENCING Whole-Genome Chromatin IP Sequencing (ChIP-Seq) Illumina ChIP-Seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify binding sites of DNA-associated proteins. Illumina ChIP-Seq technology precisely and cost-effectively maps global binding sites for a protein of interest

INTRODUCTION Transcription factors and other chromatin-associated proteins are essential phenotype-influencing mechanisms. Determining how proteins interact with DNA to regulate gene expression is essential for fully understanding many biological processes and disease states. This epigenetic information is complimentary to genotype and expression analysis. Traditional methods have successfully ...

متن کامل

Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation.

ChIP coupled with next-generation sequencing (ChIP-seq) has revolutionized whole-genome mapping of DNA-binding protein sites. Although ChIP-seq rapidly gained support in eukaryotic systems, it remains underused in the mapping of bacterial transcriptional regulator-binding sites. Using the virulence-required iron-responsive ferric uptake regulator (Fur), we report a simple, broadly applicable Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012